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Introduction



⮚ Significance of atmospheric particle transport: Implications for environment monitoring, climate

modeling, and impact on human health (Kumar et al. 2011, Kok et al. 2012, Evangeliou et al. 2020)

▪ Smoke plume from forest fires (Jaffe et al. 2020)

▪ Volcanic ash during eruptions (Butwin et al. 2015)

▪ Movement of sand, dust or snow (Dentoni et al. 2022, Mott et al. 2010)

⮚ Particle transport in the atmosphere covers a constantly evolving broad range of scale

▪ Particles measuring micrometers to events spanning beyond kilometer scales (Sokolik 2019)

▪ Particles’ morphology and composition critically affect particle settling and dispersion (Lahde 2013)

⮚ Significant gap remains in field data measurement capabilities

▪ Challenge: Develop tools to measure both large-scale motion + individual particle details

Importance of Understanding Particle Transport in the Atmosphere



Existing Characterization Tools

⮚ LiDAR-based remote sensing devices:

▪ Uses satellites with LiDAR array to measure particle events on large scale in the scale of continents

(Cloud Aerosol Lidar & Infrared Pathfinder Satellite Observation by NASA, Wandinger et al. 2005, Sokolik et al. 2019)

▪ Limitations: Unable to capture detailed particle information, such as changes in individual particle

concentration and spatial distributions

⮚ In –situ particle measurements tools:

▪ Analysis with PM sensors (Madokoro et al., 2021), optical particle counters (Hagan et al., 2020) and

aerodynamic particle analyzers (Johnson et al., 2018) using light scattering and aerodynamic properties to

detect particle size and distribution.

▪ Limitations: Measures only bulk properties like concentration of aerosols; individual particle size

and morphology have to be assumed (Grimm et al. 2009)

CALIPSO Laser particle counter



Digital Inline Holography (DIH)

⮚ Emerging, low-cost, compact, method of particle characterization (Katz et al. 2010, Berg et al. 2022)

⮚ Advantages: Label free characterization with a large depth of field

⮚ Information beyond morphology: Phase information including 3D location and refractive index



Existing Characterization Tools (based on DIH)

Kempinn

en et al., 
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HOLODEC
⮚ Holographic Detector of Clouds (Beals et al., 2015)

▪ DIH attached under aircraft wing

▪ Uses DIH for studying cloud composition (water and ice) and

capture spatial structure, droplet size distribution

▪ Limitations:

○ Not able to fly close to surface for sample collection

○ Not suited for detailed scanning of small area

○ Data collection is expensive

⮚ UAV based Digital Inline Holography (Kemppinen et al., 2020)

▪ Heavy payload of DIH with tethered connection

▪ Manually controlled flight for sample collection

▪ Limitations:

○ System not autonomous

○ Limited mobility with sensor attached to rope

○ Unable to track or monitor the dynamic changes in

particle properties



Bristow et al., 2023: Autonomous Aerosol Diagnostics with UAV

Bristow et al., (2023) Smoke Sampling Algorithm

Hardware DIH sensor overview and Images

⮚ Atmospheric Aerosol Diagnostics with UAV-based Holographic Imaging and Computer Vision

(Bristow et al., 2023):

▪ Drone-based system: Advantages in Flexibility and mobility

▪ Equipped with DIH: Compact DIH provides real-time high resolution holographic images

▪ Autonomous system: Deep learning-based computer vision algorithms helps to detect and follow

particle laden flows autonomously

▪ Mobile measurements: Drones can effectively navigate through particle laden flow, such as smoke



Bristow et al., 2023: Autonomous Aerosol Diagnostics with UAV

Overview of the Bristow’s smoke sampling algorithm

⮚ Limitations of Bristow et al. (2023):

▪ Lack of direction adaptation in realistic smoke scenarios with rapidly changing wind

directions and turbulent environment: Absence of feedback from within the smoke; in case of

smoke changing direction due to wind, the system fails to detect when drone comes out of smoke

and how to maneuver back in

⮚ Objective: Enhance real-time smoke tracking capabilities for dynamic particle dispersion

Particle diagnostics data from autonomous flight, showing a spatial map of particle concentration 

along the UAV path, moving along heading estimated by optical flow



Related Works



Detection and Tracking in Drones

⮚ Real-time vision-based target object detection and following:

▪ Target object detection using traditional image processing (Teuliere et al., 2011; Malouf et al., 2024) or deep

learning approaches (Kanellakis et al., 2017; Ramchandran et al., 2021; Zaldi et al., 2022)

▪ Tracking maneuvers are then executed using PID controllers (Malouf et al., 2024) often coupled with

Kalman filtering (Barisic et al., 2019) to address uncertainties.

▪ Limitations in context of our objective:

○ Atmospheric particle transport, such as smoke plumes, is fluid and dynamic, differing

significantly from the more predictable objects typically tracked by drones (Teuliere et al., 2011;

Malouf et al., 2024; Cesetti et al., 2009)

○ Current systems are more optimized for performing in controlled environments

Detection scheme for detecting Drones, Bricks, 

and RC Cars. Drone tracking drone using YOLO and 

GOTURN on Nvidia Jetson TX2
Drone tracking small vehicle



Deep Reinforcement Learning for Drone Control  

⮚ Deep Reinforcement Learning for Vision-Based Navigation in Drones:

▪ Enhanced adaptability and robustness in dynamic and unpredictable environments (Aburaya et al., 2024)

▪ Methods include vision and depth-based localization and navigation, that are primarily applied to

object avoidance, tracking, and drone racing scenarios (Kaufmann et al., 2023, Ma et al., 2023; Zhou et al., 2019)

▪ Limitations in context of our objective:

○ No prior research focused specifically on using these methods to track and follow atmospheric

flows, such as smoke plumes using drones



Related Works 

⮚ Summary:

▪ No existing research specifically focused on utilization of drones for tracking atmospheric

particle transport such as smoke plumes.

▪ Relevant studies in this field have primarily concentrated on employing drones to track more

predictable static or dynamic objects such as vehicles, people, or other drones

▪ Drones typically use PID controllers to maintain their position relative to a target object.

▪ Challenges with Irregular Objects: For tracking smoke, segmentation methods are more effective

than bounding boxes.

⮚ Challenges in Tracking atmospheric flows:

▪ Target Object: Atmospheric flows like ‘smoke plume’

▪ Nature of Smoke Plumes: Unlike solid objects, smoke plumes are fluid and dynamic.

▪ Constant Evolution: Systems must adapt to the changing shapes and densities of smoke.

▪ External Conditions: Factors like wind and turbulence require advanced tracking methods.

▪ Resource Constraints: Efficient algorithms are needed to process data in real-time with limited

onboard resources.



Methodology



⮚ Initial Smoke Detection and Descending Phase:

Begins by autonomously positioning the drone above

the smoke plume, capturing a top-down view. Once

smoke is detected, the drone descends to the smoke

dispersion region

⮚ Smoke Tracking Phase: Continuous segmentation of

smoke within the camera frame and calculating the

centroid of the segment to find the centroid of the

densest region of the smoke

⮚ PID Controller for Smoke Tracking: Commands the

drone to adjust its position based on the error between

the camera's center and the smoke centroid, enabling

effective tracking even when smoke shifts

Overview 

⮚ DRL Controller for Smoke Tracking: Utilizes PPO algorithm, trained in a simulation. The DRL

policy network predicts the drone's motion based on segmented images, aiming to guide the drone

towards areas of higher concentration when smoke shifts due to wind changing direction

Autonomous drone-based smoke tracking system working principle

Smoke segmentation

Yolo-based 

smoke detection

Yolo segmentation-based 

smoke centroid identification

Smoke source

Descending phase 

trajectory 

(controlled using 

PID controller)

In-plume tracking phase trajectory 

(controlled using PID/DRL controller)

Smoke segmentation 

centroid

RAFT optical flow for 

smoke flow direction



Hardware 

⮚ Upgrades on the Bristow et al., 2023 hardware

setup:

▪ Pixhawk: Onboard flight controller, firmware

updated to latest version 4.5.2

▪ GPS with RTK setup: Connection established

with a ground-based RTK station for more

precise GPS location.

▪ Machine vision camera: GoPro replaced with

ArduCam 12MP USB camera to reduce

latency while maintaining image quality for

flow measurements and segmentation.

GPS with RTK

Enclosure 

Box

Machine vision camera mounted on 

3-axis gimbal

Jetson 

Module

Autonomous drone-based smoke tracking system hardware

▪ Onboard GPU: Updated from Nvidia Jetson Xavier NX to Nvidia Jetson Orin Nano for onboard

edge-computing with high-efficient inference time booting from NVMe SSD.

▪ Enclosure Box with more efficient wire management: Newly designed 3D printed enclosure box

for enclosing all the wires, cables Orin, power distribution board, receiver-transmitter modules, etc.

▪ Battery Holder: Newly designed 3D printed battery holder for stabilized flight as it maneuver

through smoke plume.



Algorithm and Software Architecture

The framework of the autonomous drone 

operation algorithm

➢ Descending Phase:

▪ Hovering & Smoke Detection Setup: Drone hovers above the

plume; gimbal set for top-down view.

▪ Smoke Detection: YOLO detects smoke in top-down images

▪ Optical Flow Analysis: RAFT Optical Flow computes smoke

direction using bounding box from the detection.

▪ Yaw Alignment & Descent: Drone aligns with smoke flow; PID

controller used for descent within the plume dispersion region.

➢ In-Plume Tracking Phase:

▪ Smoke Segmentation: YOLOv8-seg identifies and segments dense

smoke regions; centroid calculated for tracking.

▪ Drone Trajectory Control:

o PID Controller: Corrects drone’s position based on location of

the smoke segments centroid in the camera frame.

o DRL Controller: Inputs binary smoke segmentation mask to

predict drone movements towards smoke and maximize return.

o Controller Switching: If required, current system allows

operator-controlled switching between PID-DRL controls.



DRL Drone Control: Proximal Policy Optimization (PPO)
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Simulation Assessment



Simulation Environment 

⮚ Challenges of Developing Autonomous Drones

▪ Testing - Requires access to a large open space as a safe testing zone

▪ Safety Concerns - Drones could behave unexpectedly while testing

▪ Resources - Failures and crashes could result in large expenses for repairs

▪ External Factors - Testing and deployment depends heavily on weather conditions (wind, rain, snow)

⮚ Simulation in Unreal Engine 5.1.1 (UE 5.1.1) makes 

up for these challenges:

▪ Supports rapid algorithm development and testing

▪ Evaluate algorithm prior to actual deployment

▪ Train DRL-based PPO controller

▪ Evaluate algorithm in different test smoke (wind)

scenarios

Simulation Environment in UE 5.1.1



Simulation Environment

Actual photo of Eolos site at UMore Park Recreated Environment in UE 5.1.1

⮚ Simulating Eolos Environment

▪ Usual location of field deployment and testing: The Eolos Wind Energy Research Consortium at

UMore Park in Rosemount, Minnesota

▪ Environment created in UE 5.1.1 to keep the simulation as close to reality as possible

▪ Main components: Clipper Liberty Wind Turbine and a 130-meter-tall Meteorological Tower

▪ Blender was utilized for designing both the Met-Tower and Wind Turbine, while the map was

reconstructed through the capture of 3D imagery using Google Earth's vision camera.

▪ The designs were finally imported into UE 5.1.1 and foliage is added to the environment



A collage of a person's face

Description automatically generated

Realistic Smoke Simulation

⮚ Simulating smoke with controlled wind

▪ Smoke is simulated using Niagara Plugin in Unreal Engine 5.1.1 (with Niagara, Niagara Fluids,

Chaos Niagara and Niagara Custom Data Interface)

▪ The speed and direction of smoke flow needs to be controlled for algorithm testing. This was done

by creating a blueprint in the event graph which controls the wind speed and direction.

▪ DRL was trained for 5 hours covering 1 million timesteps. The smoke conditions alternated

between steady, unidirectional and unsteady, high-frequency fluctuation flows.

Simulated black and white smoke in 

Unreal Engine

8X8X

(a) Steady unidirectional Smoke flow (b) Unsteady Smoke Flow with 

High-Frequency Horizontal Fluctuation
DRL training in Unreal Engine simulation

8X

Click to see video

A drone flying over a field

Description automatically generated

Click to see video

https://drive.google.com/file/d/13U62bbSBsu6tumoYImrJquqCNrh15GiE/view?usp=sharing
https://drive.google.com/file/d/13gawhMQUJZqCtNPTVP_K6SdLFrzaLGJV/view?usp=sharing


Smoke Tracking : PID Controller

⮚ Autonomous smoke tacking using drone simulation:

▪ Smoke segmentation and detection using yolov8

▪ Drone controlled using PID controller based on the positional error of the segmentation centroid

▪ Simulation demonstrates the process of drone entering the smoke, tracking the smoke along its flow

path, and ultimately reaching the source of the smoke using PID controls.

Drone autonomously tracking smoke using PID (top view)

[red bounding box shows the drone location within smoke]

Drone autonomously tracking smoke using PID (side view)

[red bounding box shows the drone location within smoke]

A computer screen shot of a jet explosion

Description automatically generated

A computer screen shot of a white smoke

Description automatically generated

Click to see video Click to see video

https://drive.google.com/file/d/13NVWnYOL5I9FCoLunI_o69YnNq2IwFSV/view?usp=sharing
https://drive.google.com/file/d/15OFiXXYMAc-liFsMFWzP9JMCtesIWsVW/view?usp=sharing


A computer screen shot of a white smoke

Description automatically generated

Smoke Tracking : DRL Controller

⮚ Autonomous smoke tacking using drone simulation:

▪ Smoke segmentation and detection using yolov8

▪ Drone controlled using smoke-segmentation and trained PPO-based DRL controller

▪ Simulation demonstrates the process of drone entering the smoke, tracking the smoke along its flow

path, and ultimately reaching the source of the smoke using DRL controls.

Drone autonomously tracking smoke using DRL (top view)

[red bounding box shows the drone location within smoke]

Drone autonomously tracking smoke using DRL (side view)

[red bounding box shows the drone location within smoke]

Click to see video Click to see video

https://drive.google.com/file/d/15MKcmybuSEU43ybwrVDGUpOZFEuuST13/view?usp=sharing
https://drive.google.com/file/d/13Kbn5CfXIKBBd_l9EOACx-cKO-K3ujI2/view?usp=sharing


Smoke Tracking Evaluation

Smoke Tracking Evaluation (in smoke flow changing direction)

Drone Location Smoke contour skeleton (mean line)

ⅆ𝒎

ⅆ𝐶

x

yz(a) (b)

⮚ Smoke tracking evaluation:

▪ Tracker drone location projected in the top-down view of smoke using RANSAC

▪ The smoke contour is detected, and the mean line (skeleton) is calculated from it.

➢ Five metrics used for performance evaluation:

▪ Normalized average distance of the drone from the mean line ෤𝜇𝑚 = Τ𝑚ⅇ𝑎𝑛 ⅆ𝑚 𝐿𝑟𝑒𝑓

▪ Normalized maximum distance of the drone from the mean line ሚⅆ𝑚,𝑚𝑎𝑥 = Τⅆ𝑚 𝐿𝑟𝑒𝑓

▪ Normalized average distance when outside the smoke plume ෤𝜇𝑐 = Τ𝑚ⅇ𝑎𝑛 ⅆ𝑐 𝐿𝑟𝑒𝑓

▪ Normalized maximum distance when outside the smoke plume ሚⅆ𝑐,𝑚𝑎𝑥 = Τⅆ𝑐 𝐿𝑟𝑒𝑓

▪ Percentage of time inside the smoke plume ǁ𝑡𝑅 (𝐿𝑟𝑒𝑓 is the total smoke tracking length)

A screenshot of a computer

Description automatically generated

Click to see video

https://drive.google.com/file/d/13tWtMJbDaXuyNwMcZ1p78sND15TQcLEl/view?usp=sharing


Smoke Tracking Evaluation

⮚ Smoke tracking evaluation:

▪ Tracker drone location projected in the top-down view of smoke using RANSAC

▪ The smoke contour is detected, and mean line (skeleton) is calculated using the smoke contour

▪ Steady Smoke Flow (S): Constant streamwise wind (𝑉𝑦) of 4.5 m/s with no fluctuations

▪ Unsteady Smoke Flow with Low-Frequency Horizontal Fluctuation (UL): Mild low-frequency 

fluctuating crosswind - primary wind 𝑉𝑦 = 4.5 m/s, crosswind specified 𝑉𝑥 =

1.35 sin 0.02𝜋𝑡 m/s with an amplitude of 1.35 m/s and a frequency of 0.01 Hz. 

▪ Unsteady Smoke Flow with High-Frequency Horizontal Fluctuation (UH): Stronger high-

frequency crosswind superimposed on top of the primary wind of 𝑉𝑦 = 4.5 m/s, crosswind 𝑉𝑥 =

1.95 sin 0.04𝜋𝑡 m/s with an amplitude of 1.95 m/s and 0.02 Hz frequency.

▪ Unsteady Smoke Flow with 3D Fluctuation (U3D): Both horizontal and vertical wind

fluctuations in the primary wind of 𝑉𝑦 = 4.5 m/s. 𝑉𝑥 = 1.95 sin 0.04𝜋𝑡 (amplitude 1.95 m/s,

frequency 0.02 Hz), and vertical wind 𝑉𝑧 = 0.3 sin 0.02𝜋𝑡 (amplitude 0.3 m/s, frequency 0.01 Hz).



Smoke Tracking Results

෤𝜇𝑚(%) ሚⅆ𝑚,𝑚𝑎𝑥(%) ෤𝜇𝑐(%) ሚⅆ𝑐,𝑚𝑎𝑥(%) ǁ𝑡𝑅 (%)

S

PID 1.6±0.2 7.5±2.1 1.4±0.6 2.9±0.7 95.1±2.5

DRL 1.4±0.2 7.0±2.3 1.8±1.2 4.0±3.3 94.1±1.4

U
L

PID 4.0±0.4 11.9±2.2 2.5±1.3 6.6±3.1 87.1±2.2

DRL 1.8±0.5 10.1±2.3 2.5±1.1 8.4±3.3 86.9±1.8

U
H

PID 7.2±1.5 28.1±10.9 5.3±3.8 18.6±7.4 69.4±4.7

DRL 5.4±1.1 26.0±8.4 4.6±3.1 12.3±6.5 85.0±6.4

U
3

D

PID 4.1±0.6 15.5±6.5 4.5±2.6 12.8±5.9 79.5±2.3

DRL 1.9±0.5 10.6±4.4 1.5±2.1 4.3±4.3 95.0±4.1

⮚ Smoke tracking evaluation:

▪ The PID and the DRL controller performed almost

the same in steady unidirectional flow and also in

unsteady flow with low fluctuations according to

the metric scores.

▪ The DRL controller outperforms PID under

challenging smoke conditions (U3D), staying

inside the smoke almost 15% longer.

▪ The DRL controller significantly reduces tracking

error in unsteady environments, with a 12.3%

maximum deviation compared to PID's 18.6% in

high-frequency fluctuations (UH and U3D).

▪ Under 3D fluctuation, DRL’s avg. distance from

the mean line to 1.9%, while for PID its 4.1%,

showcasing the DRL's better adaptation to more

realistic multidimensional smoke fluctuations.



Field Demonstration



Field Demonstration 

⮚ Autonomous smoke tacking using drone simulation:

▪ Smoke Segmentation using yolov8-seg model

▪ Autonomous drone movements using PID and DRL-based controller.

▪ Deployment demonstrates the process of drone tracking the smoke along its flow path, and ultimately

reaching the source of the smoke.

Drone autonomously tracking smoke (top view)

[red bounding box shows the drone location within smoke]

Drone autonomously tracking smoke (side view)

[red bounding box shows the drone location within smoke]

Smoke coming out of a field

Description automatically generated

Click to see Video Click to see Video

https://drive.google.com/file/d/13YeBR5zq7-gG9qJmV9pXWNJaK8P1Q6Qi/view?usp=sharing
https://drive.google.com/file/d/13YeBR5zq7-gG9qJmV9pXWNJaK8P1Q6Qi/view?usp=sharing


Future work and Conclusion

⮚ Improve the Deep Reinforcement Learning based controller for smoother and more intelligent smoke 

tracking in more unpredictable smoke-wind scenarios.

⮚ Deploy the tracking system in actual forest fire smoke.

⮚ Have a master-worker drone swarm system in which the master drone will be outside the smoke to 

capture the smoke view from outside the smoke for more intelligent, accurate and robust tracking using 

the worker drones.



Questions 
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